📚 Learn, Apply, Win
Explore articles designed to spark ideas, share knowledge, and keep you updated on what’s new.
RankWit continuamente analizza i motori AI generativi come ChatGPT, Gemini e Perplexity per vedere se, quando e come viene fatto riferimento ai tuoi contenuti. Quindi aggreghiamo questi dati in una dashboard di facile lettura, che mostra:
RankWit analizza i tuoi contenuti esistenti e fornisce raccomandazioni attuabili e basate sui dati per migliorare la visibilità dell'IA. I suggerimenti includono:
Agentic RAG rappresenta un nuovo paradigma in Generazione aumentata di recupero (RAG).
Mentre il RAG tradizionale recupera le informazioni per migliorare l'accuratezza degli output del modello, Agentic RAG fa un ulteriore passo avanti integrando agenti autonomi in grado di pianificare, ragionare e agire in flussi di lavoro in più fasi.
Questo approccio consente ai sistemi di:
In altre parole, Agentic RAG non solo fornisce risposte migliori, ma gestisce strategicamente il processo di recupero per supportare processo decisionale più accurato, efficiente e spiegabile.
Le trasformatore è l'architettura fondamentale alla base dei moderni LLM come GPT. Introdotti in un innovativo documento di ricerca del 2017, i trasformatori hanno rivoluzionato l'elaborazione del linguaggio naturale consentendo ai modelli di considerare l'intero contesto di una frase contemporaneamente, piuttosto che semplici sequenze parola per parola.
L'innovazione chiave è meccanismo di attenzione, che aiuta il modello a decidere quali parole di una frase sono più pertinenti l'una per l'altra, imitando essenzialmente il modo in cui gli umani prestano attenzione a dettagli specifici in una conversazione.
I trasformatori consentono agli LLM di generare risposte più coerenti, consapevoli del contesto e accurate.
Ecco perché oggi sono al centro della maggior parte dei modelli linguistici all'avanguardia.
I Large Language Model (LLM) sono sistemi di intelligenza artificiale addestrati su enormi quantità di dati di testo, dai siti Web ai libri, per comprendere e generare il linguaggio.
Usano algoritmi di deep learning, in particolare architetture di trasformatori, per modellare la struttura e il significato del linguaggio.
Gli LLM non «conoscono» i fatti come fanno gli umani. Invece, prevedono la parola successiva in una sequenza utilizzando le probabilità, in base al contesto di tutto ciò che l'ha preceduta. Questa capacità consente loro di produrre risposte fluenti e pertinenti su innumerevoli argomenti.
Per uno sguardo più approfondito alla meccanica, dai un'occhiata al nostro post completo sul blog: Come funzionano i modelli linguistici di grandi dimensioni.
Tokenizzazione è il processo mediante il quale i modelli di intelligenza artificiale, come GPT, suddividono il testo in piccole unità, chiamato gettoni—prima dell'elaborazione. Questi token possono essere piccoli come un singolo carattere o grandi come una parola o una frase. Ad esempio, la parola «commercializzazione» potrebbe essere un token, mentre «Strumenti basati sull'intelligenza artificiale» potrebbe essere suddiviso in più parti.
Perché è importante per GEO (ottimizzazione generativa del motore)?
Perché il grado di tokenizzazione dei tuoi contenuti influisce direttamente sulla precisione con cui vengono compresi e recuperati dall'intelligenza artificiale. Una scrittura mal strutturata o eccessivamente complessa può confondere i confini dei token, con conseguente mancanza di contesto o risposte errate.
✅ Linguaggio chiaro e conciso = migliore tokenizzazione
✅ Titoli, elenchi e dati strutturati = più facili da analizzare
✅ Terminologia coerente = migliore richiamo dell'IA
In breve, ottimizzare per GEO significa scrivere non solo per i lettori o i motori di ricerca, ma anche per come funziona l'IA tokenizza e interpreta i tuoi contenuti dietro le quinte.
Modelli linguistici di grandi dimensioni (LLM) come GPT vengono addestrati su grandi quantità di dati di testo per apprendere i modelli, le strutture e le relazioni tra le parole. Essenzialmente, predire la parola successiva in una sequenza basato su ciò che è venuto prima, consentendo loro di generare un linguaggio coerente e simile a quello umano.
Questo è importante per GEO (ottimizzazione generativa del motore) perché significa che i tuoi contenuti devono essere:
Comprendendo come «pensano» gli LLM, le aziende possono ottimizza i contenuti non solo per gli esseri umani o i motori di ricerca, ma per i modelli di intelligenza artificiale che stanno diventando il nuovo livello di scoperta.
Conclusione: Se i tuoi contenuti aiutano il modello a prevedere la risposta giusta, GEO aiuta gli utenti a trovare voi.
Ottimizzazione generativa del motore (GEO) e Ottimizzazione del motore di risposta (AEO) sono strategie strettamente correlate, ma hanno scopi diversi nel modo in cui i contenuti vengono scoperti e utilizzati dalle tecnologie di intelligenza artificiale.
llms.txt
) per guidare il modo in cui i sistemi di intelligenza artificiale interpretano e assegnano priorità ai tuoi contenuti.In breve:
AEO ti aiuta sii la risposta nei risultati della ricerca AI. GEO ti aiuta sii la fonte di cui le piattaforme di intelligenza artificiale generativa si fidano e citano.
Insieme, queste strategie sono essenziali per massimizzare la visibilità in un panorama di ricerca incentrato sull'intelligenza artificiale.
AI Search Optimization refers to the practice of structuring, formatting, and presenting digital content to ensure it is surfaced by AI systems—particularly large language models (LLMs)—in response to user queries.Choosing a clear, unified name for this emerging field is crucial because it shapes professional standards, guides tool development, informs marketing strategies, and fosters a cohesive community of practice. Without a consistent term, the industry risks fragmentation and inefficiency, much like early digital marketing faced before "SEO" was widely adopted.
RAG (Generazione aumentata di recupero) è una tecnica di intelligenza artificiale all'avanguardia che migliora i modelli linguistici tradizionali integrando un sistema esterno di ricerca o recupero delle conoscenze. Invece di affidarsi esclusivamente a dati preaddestrati, un modello abilitato al RAG può ricerca in un database o in una fonte di conoscenza in tempo reale e utilizza i risultati per generare risposte più accurate e contestualmente pertinenti.
Per GEO, questo è un punto di svolta.
GEO non risponde solo con un linguaggio generico, ma recupera informazioni fresche e pertinenti dalla knowledge base, dai documenti o dai contenuti web esterni della tua azienda prima di generare la risposta. Ciò significa:
Combinando i punti di forza della generazione e recupero, RAG assicura che GEO non si limita suono intelligente—esso è intelligente, in linea con la tua fonte di verità.
GEO non sostituisce la SEO: è un'evoluzione del modo in cui gli utenti interagiscono con le informazioni online.
Mentre SEO (ottimizzazione per i motori di ricerca) si concentra sul posizionamento dei contenuti nei motori di ricerca tradizionali come Google, GEO (ottimizzazione generativa del motore) si concentra sul rendere i contenuti rilevabili e utili all'interno di esperienze di ricerca e assistenza basate sull'intelligenza artificiale.
Ecco come si differenziano e interagiscono:
Man mano che gli assistenti AI diventano sempre più primo punto di contatto per il recupero delle informazioni, GEO sta diventando essenziale. Ma La SEO è ancora fondamentale per attirare traffico dai motori di ricerca e creare un'autorità di dominio a lungo termine.
In breve: GEO migliora i tuoi contenuti Prontezza per l'intelligenza artificiale, mentre la SEO assicura che sia pronto per i motori di ricerca. Il futuro non è SEO o Geo: è SEO e GEO, lavorando in tandem.
Ottimizzazione generativa del motore (GEO) — noto anche come Ottimizzazione dei modelli linguistici di grandi dimensioni (LLMO) — è il processo di ottimizzazione dei contenuti per aumentarne la visibilità e la pertinenza all'interno delle risposte generate dall'intelligenza artificiale da strumenti come ChatGPT, Gemini o Perplexity.
A differenza della SEO tradizionale, che mira al posizionamento nei motori di ricerca, GEO si concentra su come i modelli linguistici di grandi dimensioni interpretano, assegnano priorità e presentano le informazioni agli utenti in output conversazionali. L'obiettivo è influenzare come e quando i contenuti vengono visualizzati nelle risposte basate sull'intelligenza artificiale.
L'ottimizzazione generativa dei motori (GEO) sta diventando sempre più critica man mano che il comportamento degli utenti si sposta verso Strumenti di ricerca nativi per l'intelligenza artificiale come ChatGPT, Gemini e Perplexity.
Secondo Bain, dati recenti mostrano che oltre il 40% degli utenti ora preferisce le risposte generate dall'intelligenza artificiale rispetto ai risultati dei motori di ricerca tradizionali.
Questa tendenza riflette un'importante evoluzione nel modo in cui le persone scoprono e consumano le informazioni.
A differenza della SEO tradizionale, che si concentra sul posizionamento nei risultati di ricerca statici, GEO assicura che i tuoi contenuti siano comprensibile, pertinente e autorevole abbastanza per essere citato o emerso in Risposte generate da LLM.
Ciò è particolarmente importante quando le piattaforme di intelligenza artificiale iniziano a integrarsi funzionalità di ricerca web in tempo reale, riassunti e citazioni direttamente nelle loro risposte.
L'urgenza è amplificata dall'andamento del traffico degli utenti. Secondo i dati di Similarweb (vedi tabella sotto), Si prevede che le visite a ChatGPT supereranno quelle di Google entro dicembre 2026 se la crescita attuale continua.
Questo suggerisce che la visibilità negli LLM potrebbe presto essere altrettanto importante, se non di più, rispetto ai tradizionali ranking di ricerca.
Il GEO richiede un cambio di strategia rispetto alla SEO tradizionale. Invece di concentrarti esclusivamente su come i motori di ricerca scansionano e classificano le pagine, Ottimizzazione generativa del motore (GEO) si concentra su come Modelli linguistici di grandi dimensioni (LLM) come ChatGPT, Gemini o Claude comprendere, recuperare e riprodurre informazioni nelle loro risposte.
Per semplificare l'implementazione, possiamo applicare i tre pilastri classici della SEO:Semantica, Tecnicoe Autorità/collegamenti—reinterpretata attraverso la lente di GEO.
Questo si riferisce al linguaggio, struttura e chiarezza del contenuto stesso: cosa scrivi e come lo scrivi.
🧠 Tattiche GEO:
🔍 Rispetto alla SEO tradizionale:
Questo pilastro riguarda il modo in cui sono i tuoi contenuti codificato, consegnato e accessibile—non solo dagli umani, ma anche dai modelli di intelligenza artificiale.
⚙️ Tattiche GEO:
🔍 Rispetto alla SEO tradizionale:
Questo si riferisce al segnali di fiducia che indicano a un modello, o a un motore di ricerca, che i tuoi contenuti sono affidabili.
🔗 Tattiche GEO:
🔍 Rispetto alla SEO tradizionale:
Man mano che le aziende e i creatori di contenuti iniziano ad adattarsi all'ottimizzazione generativa dei motori, è fondamentale riconoscere che le strategie efficaci nella SEO tradizionale non sempre si traducono in successo con modelli di ricerca basati sull'intelligenza artificiale come ChatGPT, Gemini o Perplexity.
In effetti, alcune pratiche SEO classiche possono effettivamente ridurre la tua visibilità nelle risposte generate dall'intelligenza artificiale.
Nella SEO tradizionale, l'uso di parole chiave mirate, spesso ripetuta strategicamente su intestazioni, metadati e contenuto del corpo, è una tattica fondamentale.
Questo approccio aiuta i crawler dei motori di ricerca ad associare le pagine a query specifiche ed è stato a lungo utilizzato per migliorare il posizionamento su piattaforme come Google e Bing.
Tuttavia, nel contesto della GEO, il keyword stuffing e la rigida ripetizione possono ritorcersi contro. In effetti, i Large Language Model (LLM) non sono abbinatori di parole chiave, ma riconoscono modelli che danno priorità al linguaggio naturale, contestuale e semanticamente ricco.
Quando i contenuti sono eccessivamente ottimizzati e mancano di un tono colloquiale o umano, diventa meno interessante per i modelli di intelligenza artificiale citare o riassumere.
Peggio ancora, potrebbe segnalare al modello che il contenuto è promozionale o innaturale, con conseguente perdita di priorità nelle risposte generate dall'intelligenza artificiale.
ℹ️ Buone pratiche: Invece di concentrarti su parole chiave che corrispondono esattamente, crea contenuti che rispecchino il modo in cui gli utenti reali pongono domande. Usa un linguaggio semplice e fluente e concentrati sulla risposta completa alle probabili intenzioni degli utenti con un tono naturale.
Inoltre, mentre E-E-A-T (Esperienza, competenza, autorità, affidabilità) ha acquisito importanza nella SEO, spesso è ancora possibile classificare le pagine SEO con un'autorità minima se i segnali tecnici e di contenuto sono forti. Questo è meno vero in GEO.
Gli LLM sono formati per far emergere e fare riferimento a contenuti che dimostrino un alto grado di affidabilità. Prediligono fonti che riflettono l'esperienza del mondo reale, la competenza in materia e l'autorità istituzionale. I contenuti privi di una chiara paternità, privi di credenziali o non riescono a trasmettere affidabilità possono essere ignorati dagli LLM, anche se ottimizzati in altri modi.
ℹ️ Buone pratiche: Crea contenuti che comunichino chiaramente perché la tua organizzazione o il tuo autore sono credibili. Includi biografie, cita le credenziali e dimostra conoscenze pratiche. Per argomenti riguardanti la salute, la finanza o la scienza, rimanda a fonti istituzionali o sottoposte a revisione paritaria per rafforzare l'autorità.
Inoltre, nella SEO tradizionale, specialmente negli spazi di parole chiave a coda lunga, alcuni siti Web possono posizionarsi con fonti o citazioni minime, in particolare quando competono con contenuti deboli. Tuttavia, il GEO richiede un maggiore rigore fattuale.
Gli LLM sono progettati per riepilogare e sintetizzare dati affidabili. Tendono a ignorare i contenuti privi di citazioni, che includono affermazioni speculative o che fanno riferimento a fonti ambigue.
Inoltre, i modelli di intelligenza artificiale sono stati addestrati su grandi quantità di dati provenienti da fonti accademiche, giornalistiche e istituzionali. Questa formazione influisce sui siti e sulle fonti che i modelli tendono a privilegiare nella generazione delle risposte. È meno probabile che i contenuti senza un sourcing affidabile vengano citati o recuperati tramite i processi di Retrieval-Augmented Generation (RAG).
ℹ️ Buone pratiche: Sostieni sempre le tue affermazioni con fonti autorevoli e aggiornate. Collegati a studi originali, pubblicazioni note o istituzioni governative e accademiche. Le citazioni in linea e i riferimenti collegati aumentano l'affidabilità dei tuoi contenuti dal punto di vista di un LLM.
In breve, sebbene vi sia una certa sovrapposizione tra SEO e GEO, l'ottimizzazione per i modelli di intelligenza artificiale richiede una strategia distinta. L'attenzione si sposta dai sistemi di classificazione algoritmica dei giochi a garantire chiarezza, credibilità e accessibilità per i sistemi intelligenti che imitano la comprensione umana. Per avere successo in GEO, non basta essere visibili ai motori di ricerca, devi anche esserlo comprensibile, affidabile e utile per l'IA.