LLMO si concentra sulla progettazione e strutturazione dei contenuti per migliorarne le prestazioni all'interno di Large Language Model (LLM) come GPT-4, Claude, Gemini e Mistral. Ciò include la progettazione tempestiva, la chiarezza dei contenuti, l'accuratezza dei fatti e la segnalazione dell'autorità. L'obiettivo: garantire che l'IA comprenda, dia priorità e persino citi i tuoi contenuti nelle risposte generate.
Le trasformatore è l'architettura fondamentale alla base dei moderni LLM come GPT. Introdotti in un innovativo documento di ricerca del 2017, i trasformatori hanno rivoluzionato l'elaborazione del linguaggio naturale consentendo ai modelli di considerare l'intero contesto di una frase contemporaneamente, piuttosto che semplici sequenze parola per parola.
L'innovazione chiave è meccanismo di attenzione, che aiuta il modello a decidere quali parole di una frase sono più pertinenti l'una per l'altra, imitando essenzialmente il modo in cui gli umani prestano attenzione a dettagli specifici in una conversazione.
I trasformatori consentono agli LLM di generare risposte più coerenti, consapevoli del contesto e accurate.
Ecco perché oggi sono al centro della maggior parte dei modelli linguistici all'avanguardia.
RAG (Generazione aumentata di recupero) è una tecnica di intelligenza artificiale all'avanguardia che migliora i modelli linguistici tradizionali integrando un sistema esterno di ricerca o recupero delle conoscenze. Invece di affidarsi esclusivamente a dati preaddestrati, un modello abilitato al RAG può ricerca in un database o in una fonte di conoscenza in tempo reale e utilizza i risultati per generare risposte più accurate e contestualmente pertinenti.
Per GEO, questo è un punto di svolta.
GEO non risponde solo con un linguaggio generico, ma recupera informazioni fresche e pertinenti dalla knowledge base, dai documenti o dai contenuti web esterni della tua azienda prima di generare la risposta. Ciò significa:
Combinando i punti di forza della generazione e recupero, RAG assicura che GEO non si limita suono intelligente—esso è intelligente, in linea con la tua fonte di verità.
I Large Language Model (LLM) sono sistemi di intelligenza artificiale addestrati su enormi quantità di dati di testo, dai siti Web ai libri, per comprendere e generare il linguaggio.
Usano algoritmi di deep learning, in particolare architetture di trasformatori, per modellare la struttura e il significato del linguaggio.
Gli LLM non «conoscono» i fatti come fanno gli umani. Invece, prevedono la parola successiva in una sequenza utilizzando le probabilità, in base al contesto di tutto ciò che l'ha preceduta. Questa capacità consente loro di produrre risposte fluenti e pertinenti su innumerevoli argomenti.
Per uno sguardo più approfondito alla meccanica, dai un'occhiata al nostro post completo sul blog: Come funzionano i modelli linguistici di grandi dimensioni.