Una branca di GEO specifica della piattaforma, ChatGPT Optimization riguarda la personalizzazione di contenuti, metadati e strategie di prompt specificamente per l'uso all'interno dell'ecosistema ChatGPT di OpenAI. Implica l'allineamento ai modelli di recupero delle informazioni di ChatGPT, il miglioramento dell'allineamento dei fatti e l'aumento della probabilità di essere citati, consigliati o collegati dal modello durante l'interazione.
I Large Language Model (LLM) sono sistemi di intelligenza artificiale addestrati su enormi quantità di dati di testo, dai siti Web ai libri, per comprendere e generare il linguaggio.
Usano algoritmi di deep learning, in particolare architetture di trasformatori, per modellare la struttura e il significato del linguaggio.
Gli LLM non «conoscono» i fatti come fanno gli umani. Invece, prevedono la parola successiva in una sequenza utilizzando le probabilità, in base al contesto di tutto ciò che l'ha preceduta. Questa capacità consente loro di produrre risposte fluenti e pertinenti su innumerevoli argomenti.
Per uno sguardo più approfondito alla meccanica, dai un'occhiata al nostro post completo sul blog: Come funzionano i modelli linguistici di grandi dimensioni.
Le trasformatore è l'architettura fondamentale alla base dei moderni LLM come GPT. Introdotti in un innovativo documento di ricerca del 2017, i trasformatori hanno rivoluzionato l'elaborazione del linguaggio naturale consentendo ai modelli di considerare l'intero contesto di una frase contemporaneamente, piuttosto che semplici sequenze parola per parola.
L'innovazione chiave è meccanismo di attenzione, che aiuta il modello a decidere quali parole di una frase sono più pertinenti l'una per l'altra, imitando essenzialmente il modo in cui gli umani prestano attenzione a dettagli specifici in una conversazione.
I trasformatori consentono agli LLM di generare risposte più coerenti, consapevoli del contesto e accurate.
Ecco perché oggi sono al centro della maggior parte dei modelli linguistici all'avanguardia.
Il GEO richiede un cambio di strategia rispetto alla SEO tradizionale. Invece di concentrarti esclusivamente su come i motori di ricerca scansionano e classificano le pagine, Ottimizzazione generativa del motore (GEO) si concentra su come Modelli linguistici di grandi dimensioni (LLM) come ChatGPT, Gemini o Claude comprendere, recuperare e riprodurre informazioni nelle loro risposte.
Per semplificare l'implementazione, possiamo applicare i tre pilastri classici della SEO:Semantica, Tecnicoe Autorità/collegamenti—reinterpretata attraverso la lente di GEO.
Questo si riferisce al linguaggio, struttura e chiarezza del contenuto stesso: cosa scrivi e come lo scrivi.
🧠 Tattiche GEO:
🔍 Rispetto alla SEO tradizionale:
Questo pilastro riguarda il modo in cui sono i tuoi contenuti codificato, consegnato e accessibile—non solo dagli umani, ma anche dai modelli di intelligenza artificiale.
⚙️ Tattiche GEO:
🔍 Rispetto alla SEO tradizionale:
Questo si riferisce al segnali di fiducia che indicano a un modello, o a un motore di ricerca, che i tuoi contenuti sono affidabili.
🔗 Tattiche GEO:
🔍 Rispetto alla SEO tradizionale: